
In vitro activity of temocillin, piperacillin-tazobactam, and meropenem against third generation cephalosporin-resistant Enterobacterales

Medizinische Laboratorien DÜSSELDORF

Introduction

Infections caused by third generation cephalosporin-resistant Enterobacterales (3GCREB) pose a serious threat to public health¹. Previous studies have reported inferiority of piperacillin-tazobactam (PTZ) when treating infections due to 3GCREB leading to an overuse of reserve antibiotics like carbapenems². Alternatively, the beta-lactam antibiotic temocillin (TEM) features resistance against most betalactamases, including AmpC and extended spectrum betalactamases (ESBL) typically found in 3GCREB³. In this study, we performed comparative minimal inhibitory concentration (MIC) determination of TEM, PTZ, and meropenem (MER) in Enterobacterales, collected from urological wards and in the majority phenotypically harboring AmpC and/or ESBL. Further, we compared MIC values of PTZ and MER with different MIC methods.

Results

(Table 1). Phenotypically, 132 ESBL, 38 AmpC, 16 ESBL/AmpC, and 19 negative isolates were determined.

Table 1 MIC distributions of PTZ, TEM, and MER in 205 isolates derive reasons breakpoints given by EUCAST are applied to all strains.

Antibiotics (µg/ml)	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	1024	MIC ₅₀	MIC ₉₀	S (%)
PTZ (GDM)	-	3	7	4	17	36	22	37	28	11	0	40	-	16	> 256	43.42
PTZ (VITEK [®] 2)	-	-	-	-	-	91	37	18	6	14	39	-	-	8	> 128	62.44
PTZ (BM)	-	-	-	-	-	125	15	13	16	36	-	-	-	≤ 4	> 64	68.29
TEM (GDM)	-	-	-	-	4	57	84	45	13	1	0	0	1	8	16	92.68
TEM (BM)	-	-	-	-	-	-	-	-	203	2	-	-	-	N/A	N/A	N/A
MER (GDM)	192	13	0	0	0	0	0	0	0	-	-	-	-	≤ 0.125	≤ 0.125	100.00
MER (VITEK [®] 2)	-	190	15	0	0	0	0	0	-	-	-	-	-	≤ 0.25	≤ 0.25	100.00
MER (BM)	205	0	0	0	0	0	0	0	0	0	0	-	-	≤ 0.125	≤ 0.125	100.00

L. Stenzel¹, S. Schröder¹, A. Fischer¹, T. Hattwig¹, K. Seefeldt¹, A. Gehnen¹, K. Grimm², R. Geisel¹, B. R. Thoma¹ ¹ Medizinische Laboratorien Düsseldorf, Düsseldorf, Germany ² EUMEDICA SA, Manage, Belgium

Methods

205 isolates, classified as 3GCREB, were collected from urine (n=197) and blood culture samples (n=8) between September 2020 and January 2021 (Escherichia (E.) coli n=116, Klebsiella (K.) spp. n=40 [K. pneumoniae n=30, K. aerogenes n=8, K. oxytoca n=2], Proteus (P.) mirabilis n=7, Providencia (P.) rettgeri n=1, Enterobacter (E.) spp. n=20 [E. cloacae n=13, *E. cloacae complex* n=7], *Citrobacter* (*C*.) spp. n=5 [*C. freundii* n=4, C. braakii n=1], Serratia (S.) marcescens n=2, Morganella (*M.*) morganii n=14) and MICs determined by gradient diffusion method (GDM) [bioMérieux, France; for TEM, PTZ, MER], broth microdilution (BM) [MERLIN (MICRONAUT-S MDR MRGN-Sreening), Germany; for PTZ, MER], and VITEK[®] 2 [bioMérieux (AST-371; AST-223), France; for PTZ, MER], respectively. MICs of TEM, PTZ, and MER were assessed using EUCAST (version 11.0) breakpoints. The isolates were phenotypically differentiated for AmpC and/or ESBL using disc diffusion method (zone diameter cut-off at ≥ 4 mm)⁴

All isolates were sensitive to MER and the MIC distribution pattern was equal in either MIC method. MIC distribution (GDM) of all strains showed a shift towards higher values of PTZ (MIC₅₀=16 μ g/ml, MIC₉₀>256 μ g/ml) as compared to TEM (MIC₅₀=8 μ g/ml, MIC₉₀=16 µg/ml) (Table 1). In comparison, 89.66% (104/116) *E. coli*, 96.67% (29/30) *K. pneumoniae*, 100% (2/2) *K. oxytoca,* and 100% (7/7) P. mirabilis were susceptible to TEM and 48.28% (56/116) E. coli, 33.33% (10/30) K. pneumoniae, 0% (0/2) K. oxytoca, and 100% (7/7) P. mirabilis to PTZ in GDM, respectively (Figure 1). For PTZ, MICs derived from GDM (MIC₅₀=16 μ g/ml, $MIC_{90}>256 \ \mu g/ml$) were higher compared to VITEK[®] 2 ($MIC_{50}=8 \ \mu g/ml$, $MIC_{90}>128 \ \mu g/ml$) and BM ($MIC_{50}\leq4 \ \mu g/ml$, $MIC_{90}>64 \ \mu g/ml$). Qualitatively, 43.42%, 62.44%, and 68.29% of all isolates were sensitive to PTZ determined by GDM, VITEK[®] 2, and BM, respectively

rived by three methods (GDM, VITEK [®] 2 and BM). For illustrative	
eakpoint; green = ≤; orange = >; N/A = not applicable and S = susceptibili	ty

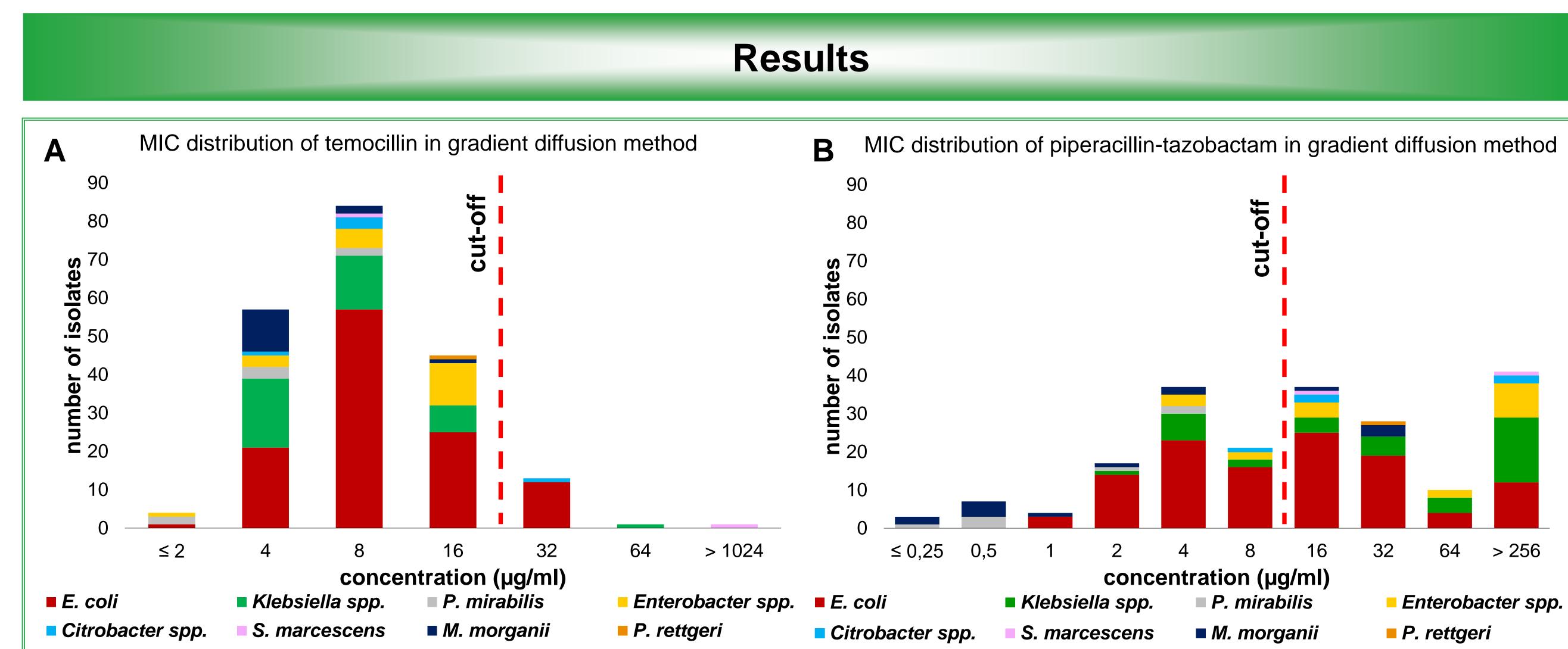
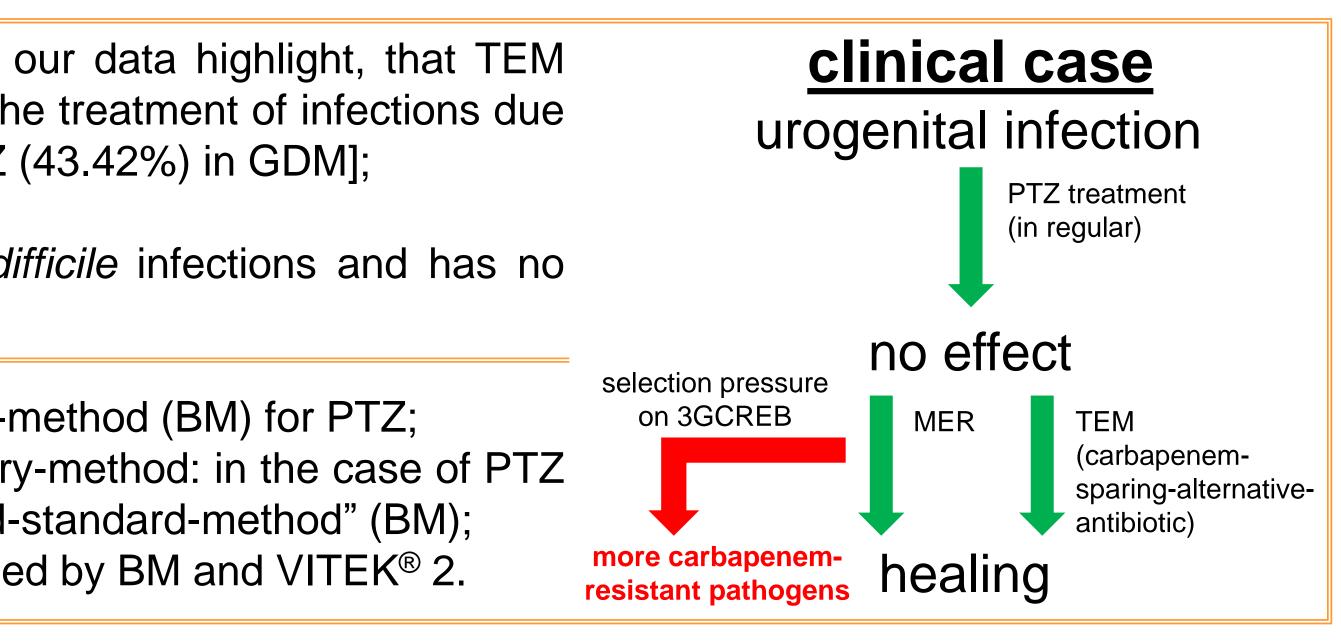


Figure 1 MIC distributions of 205 isolates of TEM and PTZ in GDM. (A) MIC distribution of TEM divided into species and genera. Total MIC₅₀=8 μ g/ml and MIC₉₀=16 μ g/ml. (B) MIC distribution of PTZ divided into species and genera. Total MIC₅₀=16 μ g/ml and MIC_{90} >256 µg/ml. For illustrative reasons breakpoints given by EUCAST are applied to all strains.

Conclusion

- In the clinical setting PTZ is always escalated with MER and our data highlight, that TEM could be a better carbapenem-sparing-alternative-antibiotic for the treatment of infections due to 3GCREB than PTZ [e.g., susceptibility TEM (92.68%) vs. PTZ (43.42%) in GDM];
- PTZ, however, has antipseudomonal activity;
- Advantageously, TEM renders a minimal risk of Clostridium difficile infections and has no significant inoculum effect⁵.
- VITEK[®] 2 shows near concordant results with the gold-standard-method (BM) for PTZ;
- In routine laboratories GDM is widely used as a MIC-confirmatory-method: in the case of PTZ our results show, that confirmation should be done with the "gold-standard-method" (BM);
- For comparative reasons MICs for TEM should also be determined by BM and VITEK[®] 2.


Acknowledgements

We thank A. Brandenburg, R. Morhard, M. Opgenhoff, F. Stern, and H. Switala for their excellent assistance.

References

- 1. Rodriguez-Villalobos et al. (2006), Journal of Antimicrobial Chemotherapy vol. 57,4: 771-774.
- 2. Tamma et al. (2015), Clinical Infectious Diseases vol. 60,9: 1319-1325.
- 3. Habayeb et al. (2015), Eur J Clin Microbiol Infect Dis vol 34,8: 1693-1699. 4. Tan et al. (2009), Antimicrob Agents Chemother 53,9: 146-149.
- 5. Alexandre and Fantin (2018), Clinical pharmacokinetics vol. 57,3: 287-296.

Correspondence

Lisa Stenzel Phone: +49-211-4978190 Mail: stenzel@labor-duesseldorf.de